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Abstract. A stochastic cellular automata rule obtained by adding two rule components 
with probabilities 1 - c l  and 1 - c4 to Conway’s ‘Life’ is studied both by computer simulation 
and theoretically. A line of phase transitions from an ordered domain-structured phase 
to a disordered one is observed and explained by introducing an inhomogeneous mean-field 
approximation which incorporates important correlations. 

1. Introduction 

Probabilistic cellular automata (CA) have been widely investigated in recent years (see 
Wolfram (1986) for a selection of articles). The CA rules can be made stochastic in 
several ways. Grassberger er af (1984) studied two elementary one-dimensional CA 

with very specific added noise and obtained a phase transition from class 2 (separated 
periodic structures) to class 3 (chaotic) behaviour (using the classification of Wolfram 
(1984)) via instability of kinks between ordered states. For a more general class of 
stochastic I D  CA, using transfer-matrix scaling, phase diagrams and critical properties 
of transitions between class 1 (homogeneous final states) and class 2 and between class 
2 and class 3 deterministic behaviour have been calculated and compared with numeri- 
cal experiments (Kinzel 1985). 

In two dimensions, studies of phase transitions in a large class of simple stochastic 
CA have been given more recently (Kaneko and Akutsu 1986). These authors have 
used the simplest way to include noise, namely at each time step the value obtained 
by application of the deterministic rule has been reversed with a probability p .  In the 
study of a stochastic version of Conway’s ‘Life’ rule the noise term introduced by 
Schulman and Seiden ( 1978), called ‘temperature’, was defined similarly except for 
weighting it with the average density at each time step. By starting from an approxima- 
tion akin to the mean-field approximation (MFA) of statistical physics and calculating 
pair correlations to first order, Schulman and Seiden (1978) arrived at a phase transition 
between phases of strongly differing average densities upon changing the ‘temperature’. 
This calculation was aimed at explaining the transition they observed experimentally 
in the computer simulation of the rule, from an equilibrium state with average density 
( p )  = 0 to a disordered state setting in at some critical ‘temperature’. 

The rules investigated in the present paper are also defined from Conway’s ‘Life’ 
rule. Two specific noise components are added with probabilities 1 - c l  and 1 - c4, 
which will be allowed to vary between 0 and 1 with the restriction c l  + c 4 S  1 ( 5  2). 
The observed phase diagram in the ( c l ,  c4) plane shows a line of phase transitions 
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from a disordered phase into an ordered one with domain structure made up of four 
phases (vertical and horizontal stripes on even and odd sites) ( 0  3). 

With the aim of allowing for the most important CA correlations in this structured 
phase, we propose here a generalised MFA which works, in general, with four sublattice 
densities of which two agree pairwise when considering a fixed phase (say, stripes in 
even rows). The analogy with ferromagnets suggests the definition of an order para- 
meter proportional to the difference of densities in even and odd rows. The phase 
transition line is obtained qualitatively correctly; the transition is predicted to be first 
order ( 0  4). 

Finally, a short discussion of the results and problems is presented (§  5). 

2. The model system 

For an eight-neighbour outer totalistic 2D CA the value a,,, of a site at position ( i ,  j )  
evolves according to the rule: 

a,,,( t + 1) = a:, =f (at., 1 q , + 1 +  Q, , , - I  + a,+,,,  

+ a,-,, ,+ a1-1,,-1+ a,-,,,+, + an+1,,-1+ a1+1,,+1). (1) 

Packard and Wolfram (1985) conveniently specified such rules by a code 
8 

E =  c f ( a ,  n ) k k ' " + a  
n =o 

where a denotes the state of the centre cell and n stands for the possible values of the 
sum over the eight neighbours. In the family of automata investigated below, k = 2 
and takes the values of 0 and 1. 

We shall consider the following probabilistic CA rules: 

f (0 ,3)  = f ( L  2) 3) = 1 

f (1 , l )  = 1 

f ( l , 1 )  = o  with probability c l  

f ( l t 4 )  = 1 

f ( 1 , 4 ) = 0  with probability c4 

f(a, n )  = 0 otherwise. 

with probability 1 - c l  

with probability 1 - c4 
(3) 

For c l  = c4 = 1, Conway's 'Life' rule results (e = 224). The other three limiting 
deterministic automata rules are as follows. 

c l  = 1, c4 = 0 (2 = 736). This rule has been discussed in detail by Packard and 
Wolfram (1985). When starting from a random initial configuration it leads to a class 
2 final state with domain structure made up of four phases: two with horizontal stripes 
(stripes either on odd or on even rows) and two with vertical stripes (on odd or on 
even columns). Regions formed of one of these phases are invariant under the CA 

rule. Starting from a disordered configuration different phases evolve on different parts 
of the lattice and are separated by domain walls. 

c l  = 0, c4 = 1 ( E  = 232). This CA shows no structure when starting from a random 
initial state; its behaviour is chaotic. 
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Figure 1.  Sections of typical domain walls between two of the four phases: ( a )  domain 
walls which remain (if infinitely extended) even if c l  = c 4 =  1; ( b )  and ( c )  are typical 
domain walls near the c l  = c4 = 0 corner of the phase diagram. 

c l  = c4 = 0 (2  = 744). Out of a random start this automaton evolves into a stable 
final state, similar to the one with 2 = 736. Nevertheless, there are important differences 
which become more apparent when departing somewhat from the deterministic limit, 
e.g. along c l  = c4 (see later). The most important effect brought about by f (  1 , l )  = 1 
is that lines of ones when formed in one or the other of the four striped structures will 
not be shortened at their loose ends in consecutive time steps, thus favouring, in a 
spectacular way, the formation of large domains of the four phases. 

The striped structure is also invariant under the ‘Life’ rule but its formation is 
extremely improbable. The four striped phases are separated by domain walls. Also 
some of the domain walls are stable for ‘Life’, see, e.g., figure l ( a ) .  Such domain 
walls will be called invariant in the following as they do not change upon changing 
the strength of noise. There are some domain walls, however, which arise due to the 
finite probability o f f (  1, 1) = 1 and f (  1,4)  = 1 like the ones shown in figure l(b, c). 

3. Results of computer simulation 

Now allowing c l  and c4 to vary in the interval (0, 1) with the restriction c l  + c 4 S  1, 
in the computer simulation of rules (3 )  for lattices of sizes up to 200 x 200 with periodic 
boundary conditions a line of phase transitions has been observed between a disordered 
and an ordered phase (figure 2). The latter is made up of the four striped structures 
mentioned earlier. Snapshots of the distribution of ones at large times for certain 

C 4  

’\ 

A .  
’ \ .  

, , 

0 0.2 0.4  0.6 0.8 1.0 
C l  

Figure 2. Phase diagram in the ( c l ,  c4) plane. The chain curve has been drawn along 
experimental results obtained with an IBM PC on lattices of sizes varying from 32 x 32 to 
S O X  80. Because of the poor statistics 5-10% deviations are possible. The full curve is the 
result of the inhomogeneous M F A  explained later in the text. 
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characteristic values of the probability c along the diagonal c l  = c4 of the phase 
diagram are shown in figure 3 .  

Out of a random initial state, the formation of a pure phase is extremely improbable. 
A typical equilibrium state is built up of domains of the striped phases with invariant 
domain walls between them. The phase change can uniquely be characterised by the 
change in the density of non-invariant domain walls: this quantity is finite in the 
disordered phase while it disappears as t + m  in the four-phase regime. A similar 
quantity has been used as order parameter by Grassberger et al (1984) in treating 
certain probabilistic one-dimensional CA; in their case, however, no invariant domain 
walls exist and thus the description is much simpler. In the framework of the presently 
studied 2~ stochastic automata rule the formulation and measurement of the density 
of possible non-invariant domain walls is not feasible. 

While in the I D  counterpart of the model (Grassberger et al 1984) the number of 
possible final states is two (by analogy with the Ising model), in the present case there 
are infinitely many invariant domain arrangements in the limit of infinite lattice size 
(by analogy with real magnets). In the ordered four-phase regime the system will 
spontaneously order in one of these as ? + W .  By preparing the initial state as a 
monodomain containing a small amount of defects, it is possible to bring the system 
in a strongly 'magnetised' equilibrium state and use the analogue of magnetisation as 
an order parameter. For the sake of definiteness the singled-out phase will be the one 
with horizontal stripes with ~ ~ ( 0 )  ( ~ ~ ( 0 ) )  being the density of ones in odd (even) rows. 
Let us define 

.......................... .............................. ............................. ................................... 
. . . . . . . . . . .  . . . . . . . .  . . . . .  . . . . .  ......................... ." ... ................................ 



......... ............ ................ 
- ........... 

c = 0 . 5  c ~ 0 . 3  

" ..................... . .  ................ . ...................... 
.I.. 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  .................... 
. . . .  ...-. . . . . .  ...... ". . . . . .  . . . . . . . . . .  ..... ..-. .... 


c = O . l  c . 0  

Figure 3. Snapshots of typical CA patterns after about lo3 time steps along the diagonal 
c l  = c4 = c of the phase diagram. Marked differences between different regimes are 
apparent. 
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to characterise the initial state. A( 0) = 0 corresponds typically to a totally random 
initial state while A(0)  = 1 characterises a striped monodomain with stripes on odd rows. 

The definition of the order parameter is 

The computer experiment for measuring A (  t )  was performed on an IBM PC which 
ran in total for about six weeks. For the largest lattice investigated (40 000 cells) one 
iteration took 18s using a program written in FORTRAN. The maximal number of 
iterations run was 2 x lo5. Because of the long computing times needed in the vicinity 
of the transition, detailed study of A ( t )  could be performed only along the line 
c l  = c4 = c of the phase diagram. The results for the 200 x 200 lattice are depicted in 
figure 4. The initial value of the ‘magnetisation’ was chosen to be 0.78. The critical 
value of c was found to be c,,=O.31 *0.02. For c >  c,,, A ( t )  exhibits an exponential 

t 

1 0  

08 

0 6  

0 4  

0 2  

Q O  

-0 2 

-0 4 

- c 
I 

t 

0 32 

1 I b) 

Figure 4. Time development of h ( t )  for different values of the probability c ( e l  = c4= c )  
showing averages over the preceding 50 time steps at each point to wash out part of the 
fluctuations. ( a  1 Lattice size 64 x 64, ( b )  200 x 200. 
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decay for small values of t with relaxation time T, which increases as c approaches 
ccr; the exponential interval is followed by a fluctuating one: A ( ? )  fluctuates around 
zero, the amplitude of fluctuations again growing with decreasing c - ccr. All these 
features are very much reminiscent of the corresponding ones found in Monte Carlo 
studies of spin systems, especially of Ising systems (Binder 1979, Binder and Stauff er 
1984 and references therein). At c = 0.31 the longest run (2 x 10’) was insufficient to 
reach zero average ‘magnetisation’ for the largest lattice. 

With decreasing c < ccr, the average value of A (  t )  for large times increases steadily. 
Whether there is a jump of A(m) at c,, or the transition is continuous, could not be 
decided from the computer simulation. The difficulties of deciding the order of 
transition in the Monte Carlo experiment for spin systems have been stressed and 
explained in detail by Binder (1979). Applying similar considerations here, a clear 
indication of metastability (i.e. a two-step A( t )  curve for c < ccr) could not be observed 
in the present runs. 

As a phase transition cannot occur in finite systems, examination of the size 
dependence of our results is crucial. The computer experiment has been run for four 
different lattice sizes (with periodic boundary conditions) L = 32, 64, 128 and 200; no 
qualitative change in the features of the results has been spotted. Concerning the 
dependence on L, again strong similarities with the results of Monte Carlo experiments 
for the Ising model have been found: (i) the amplitude of the fluctuations grows with 
decreasing L, roughly as 1/L; (ii) the relaxation time increases with increasing L; (iii) 
the mean value of the ‘magnetisation’ has, on average, been found to be higher for 
smaller lattices. For illustration see figure 4( a )  where the lattice size is L = 64. 

Figure 5. According to the evenness or oddness of the coordinates of a given site, each 
site belongs to one of four sublattices 11, 12, 21 or 22. 1 stands for odd and 2 for even. 
Shown is a section of the 11 sublattice and the neighbourhood of a site on it. 

4. Theory 

Here we propose to treat the transition from chaos to four-phase regime in the 
framework of a generalised inhomogeneous MFA as follows. 

Let us introduce four sublattices as shown in figure 5 and four average densities 
corresponding to the sites on the respective sublattices. These densities will be denoted 
by p I 1  (odd-odd), p 1 2  (odd-even), p2,  (even-odd) and p z 2  (even-even). A cell, say, 
on the 11 sublattice has four 22, two 21 and two 12 neighbours. 
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A straightforward generalisation of the standard homogeneous M F A  for CA (Schul- 
man and Seiden 1978) to the case of the above inhomogeneous neighbourhood yields 
four coupled equations for the densities pK, ( K ,  1 = 1,2)  at time step t + 1 as a function 
of the densities at time step t and of the probabilities c l  and c4 in the following form: 

M(Pl, P z )  = M ( P 2 ,  PI) 

and 

S(p11, c l ,  c4, N ( P 2 2 ) ,  M(PI2, P21))  

= i N , ( P ~ ~ ) M ~ - , ( P I ~ ,  P z l ) ( a n , , + P 1 l ( 6 n , 2 +  ?16n,l+~46n.4))* (6) , = o  

Here E1 = 1 - c l  and E4 = 1 - c4. 

cases which reflect the symmetries of the underlying square lattice, as follows. 
Among the solutions of equations ( 5 )  and (6) of special importance are those three 

Case 1. Pl l ( t )  = P2* (2 )  P 1 2 ( f )  = P 2 l ( t ) .  ( 7 )  

Such a solution may describe antiferromagnetic-type ordering (stripes along the square 
diagonal). 

Case 2. p l l ( 0  = p12(t )  P > l ( t )  = P 2 2 ( f ) .  (8) 

Case 3. P l l ( t )  = P 2 l ( t )  PlAt) = P z z ( t ) .  (9) 

This special case can lead to stripes parallel to the horizontal edge of the square. 

This may give vertical stripes, along the other edge of the square, perpendicular to the 
previous one. 

A further symmetry allows the interchange of even and odd which leads to two 
equivalent solutions in all three cases. 
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For the family of rules investigated here (equation (3)) only cases 2 and 3 are of 
interest. They can account for the four phases observed in the computer experiment 
described in the previous section. It is also sufficient to restrict ourselves to, say, 
horizontal stripes only. So let us consider case 2 in the following. Then equations ( 5 )  
and (6) reduce to (pI1 = p l ,  pZZ = p 2 ) :  

pi ( r  + 1 ) = 6p:pzp’: + 3 0 p l h p : b ; +  2 0 ~  ~ P Z P Z  + ~1[~:626+ 12~1b1~26:  + 1 S P  1 ~ 2 ~ 2  
- 2  3 -3 -2 2 - 4  

+ ~ l ( 2 p l p ’ , p ’ ~ + 6 ~ f p z p ’ ~ ) + E 4 ( 1 S p ~ p ~ p ’ ~ + 4 0 p l p ’ l p ~ p ’ ~ +  15p’:p:p’:)l (IO) 

(11) pz( t +  1) =[the same as equation (lo),  but with p1  f* p z ,  ;I +P 6 2 1 .  

The fixed points of equations (10) and (11) give the equilibrium densities and are 
attained when 

Pl( t+l)=p,( t )=PpT P 2 ( t  + 1) = P A 0  = PT. 

In addition to the trivial fixed points pT, = pf, = 0, equations (10) and (1 1) possess 

(12) 

the homogeneous finite fixed point solutions 

P T h  = P T h  = ( P )  

which is the same as the fixed point of the standard MFA when applied to the automata 
(3) .  This solution is shown in figure 6 with a full line. Equation (12) is stable for all 
initial values p, (O) ,  p 2 ( 0 )  for c l ,  c4 values lying in the regions I1 and I11 of figure 2. 

t - 
0 0.2 0.4 0.6  

c 

Figure 6.  Average density of 1s along c l  = c4 = c. The full line reprtsents the result of 
standard M F A ;  the  crosses are results of computer  simulation. 

In region I of figure 2, however, an additional new pair of fixed points pTI, pTl 
appear (pT # p ? )  which can be reached from ‘striped’ initial states p , ( O ) ,  p 2 ( 0 )  ( p , ( O )  f 

This bifurcation heralds a new phase which can be identified with the striped phase 
and the fixed points pT,, pT, with asymptotic densities pl(co), p2(co) of B 3. Accordingly, 
the theoretical prediction for the order parameter A, given by equation (4), is 

P Z ( 0 ) )  only. 

pfI, pf, depend on c l  and c4, the corresponding dependence of A on c l  = c4= c is 
shown in figure 7 with a full curve. The transition is predicted to be of first order. 
The M F  value of the critical noise strength is 0.178 83. 
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C 

Figure 7. The order parameter h of the four-phase regime, defined in equation (4) ,  as a 
function of the probability c ( c l  = c 4 =  c) .  The experimental points marked by x have 
been obtained from ‘striped’ initial states with h(0) = 0.78. The full curve is the result of 
inhomogeneous MFA.  

5. Summary and discussion 

Standard MFA for cellular automata is based on the supposition that the system is 
‘stirred’ at each time step, the values at neighbouring sites of a centre cell are uncorre- 
lated. For many CA rules the average density which can be calculated in such a way 
is near to the observed one (Wolfram 1983). This holds true also for the CA rule 
investigated here both in the disordered regime and in the four-phase region which 
follows the former upon decreasing c l  and c4.  ( p )  changes continuously when 
crossing the phase boundary and has no relevance to the order which sets in. In the 
four-phase region the correlations manifest themselves mainly in stripe-forming action. 
It has been proposed here that the essence of these correlations can be accounted for 
by handling densities on, say, odd and even rows separately, in the framework of an 
inhomogeneous MFA. Starting with striped initial states (i.e. randomly distributed 1s 
in odd and even rows but with much differing probabilities) each centre cell observes 
a specifically correlated average neighbourhood. The time evolution of the system of 
equations for the two densities terminates at a strongly different pair of fixed points. 
The order parameter A (equation ( 4 ) )  by which the four-phase region has been 
characterised is analogous to the magnetisation in a ferromagnet and the specifically 
prepared initial state may be thought of as if it had been produced by some instantaneous 
magnetic field. The same process of aligning the initial state has also been used in the 
computer experiment to measure the ‘magnetisation’. 

Naturally, a theory of such simplicity cannot be expected to give quantitatively 
correct results. The agreement between theory and experiment for the magnitude of 
A is within 20% (disregarding the shift in the transition point); the phase transition 
line in the c l ,  c4 plane is predicted qualitatively correctly. There is a discrepancy 
between theory and experiment concerning the position of this line (=4O%),  however, 
which is not surprising: order is destroyed only for higher probabilities c l  and c4 than 
predicted above, due to domain-structure-forming correlations which certainly cannot 
be accounted for in such a simple theoretical framework. 

In the light of the well known success and usefulness of MFA in qualitatively 
predicting phase diagrams and yield order parameters (and other simple characteristics) 
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of ordered systems in condensed matter physics, it seems inspiring to explore the limits 
of the MFA effectiveness in the vast field offered by probabilistic cellular automata 
rules. Moreover, with its help, analogies with real physical (and other) systems may 
be worked out in more detail, for which the example presented in this paper might 
serve as an illustration. 
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